Structural Dynamics at Monolayer−Liquid Interfaces Probed by 2D IR Spectroscopy

نویسندگان

  • Daniel E. Rosenfeld
  • Jun Nishida
  • Chang Yan
  • S. K. Karthick Kumar
  • Amr Tamimi
  • Michael D. Fayer
چکیده

Monolayers functionalized with tricarbonyl1,10-phenanthroline rhenium chloride (RePhen(CO)3Cl) are studied in the presence of a variety of polar organic solvents (chloroform, tetrahydrofuran, dimethylformamide, acetonitrile), hexadecane, and water. The headgroup, RePhen(CO)3Cl, is soluble in the bulk polar organic solvents but not in hexadecane or water. The surface structural dynamics are studied using IR absorption, ultrafast two-dimensional infrared (2D IR) vibrational echoes, and heterodyne-detected transient gratings (HDTG). The headgroup is also studied in the bulk solvents. Immersion in solvent changes the environment of the surface bound RePhen(CO)3Cl as shown by a solventdependent symmetric CO stretch absorption frequency and line shape. The 2D IR spectroscopy is sensitive to spectral diffusion, which reports on the structural time dependence. In the absence of solvent (bare surface), the spectral diffusion takes place on a 37 ± 4 ps time scale, whereas in the presence of THF, MeCN, or CHCl3 it occurs on the 25 ± 6 ps time scale. However, in DMF, the spectral diffusion time constant is 15 ± 3 ps. In hexadecane the spectral diffusion slows to 77 ± 15 ps, slower than the bare surface. In D2O, the monolayer CO stretch is split into two bands, indicating distinct local structures, and the spectral diffusion of main band is again slower than the bare surface. HDTG spectroscopy is used to investigate the vibrational lifetime dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural dynamics of a catalytic monolayer probed by ultrafast 2D IR vibrational echoes.

Ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy has proven broadly useful for studying molecular dynamics in solutions. Here, we extend the technique to probing the interfacial dynamics and structure of a silica surface-tethered transition metal carbonyl complex--tricarbonyl (1,10-phenanthroline)rhenium chloride--of interest as a photoreduction catalyst. We interpret th...

متن کامل

Liquid Interfaces Probed by Second-Harmonic and Sum-Frequency Spectroscopy.

D. Chemical Reactions at Interfaces 1348 E. Electrochemistry 1350 F. Some Environmentally Interesting SH Studies 1351 G. Structural Phase Transitions 1351 H. Chiral Interfaces 1353 III. Dynamics at Liquid Interfaces 1354 A. Adsorption Kinetics to Air/Water Interfaces 1354 B. Electron Transfer at a Liquid/Liquid Interface 1355 C. Photoisomerization at Aqueous Interfaces 1355 D. Orientational Rel...

متن کامل

Monomer exchange dynamics of self-assembled surfactant monolayers at the solid-liquid interface.

Self-assembly of surface-active agents at solid–liquid interfaces is critical for many processes in nature and technology, including the stability of suspension, detergency, wetting and mineral separation. Historically, a detailed understanding of nanometer-scale layers has emerged. However, surprisingly little is known about their dynamics—the key to non-equilibrium phenomena. Even in equilibr...

متن کامل

Structural dynamics inside a functionalized metal-organic framework probed by ultrafast 2D IR spectroscopy.

The structural elasticity of metal-organic frameworks (MOFs) is a key property for their functionality. Here, we show that 2D IR spectroscopy with pulse-shaping techniques can probe the ultrafast structural fluctuations of MOFs. 2D IR data, obtained from a vibrational probe attached to the linkers of UiO-66 MOF in low concentration, revealed that the structural fluctuations have time constants ...

متن کامل

Disulfide bond influence on protein structural dynamics probed with 2D-IR vibrational echo spectroscopy.

Intramolecular disulfide bonds are understood to play a role in regulating protein stability and activity. Because disulfide bonds covalently link different components of a protein, they influence protein structure. However, the effects of disulfide bonds on fast (subpicosecond to approximately 100 ps) protein equilibrium structural fluctuations have not been characterized experimentally. Here,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013